Few-Shot Object Detection via Variational Feature Aggregation
نویسندگان
چکیده
As few-shot object detectors are often trained with abundant base samples and fine-tuned on novel examples, the learned models usually biased to classes sensitive variance of examples. To address this issue, we propose a meta-learning framework two feature aggregation schemes. More precisely, first present Class-Agnostic Aggregation (CAA) method, where query support features can be aggregated regardless their categories. The interactions between different encourage class-agnostic representations reduce confusion classes. Based CAA, then Variational Feature (VFA) which encodes examples into class-level for robust aggregation. We use variational autoencoder estimate class distributions sample from that more Besides, decouple classification regression tasks so VFA is performed branch without affecting localization. Extensive experiments PASCAL VOC COCO demonstrate our method significantly outperforms strong baseline (up 16%) previous state-of-the-art methods (4% in average).
منابع مشابه
Few-shot Object Detection
In this paper, we study object detection using a large pool of unlabeled images and only a few labeled images per category, named “few-shot object detection”. The key challenge consists in generating trustworthy training samples as many as possible from the pool. Using few training examples as seeds, our method iterates between model training and high-confidence sample selection. In training, e...
متن کاملFew-shot Learning
Though deep neural networks have shown great success in the large data domain, they generally perform poorly on few-shot learning tasks, where a classifier has to quickly generalize after seeing very few examples from each class. The general belief is that gradient-based optimization in high capacity classifiers requires many iterative steps over many examples to perform well. Here, we propose ...
متن کاملSingle-Shot Object Detection with Enriched Semantics
We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunctio...
متن کاملFisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملFew-Example Object Detection with Model Communication
In this paper, we study object detection using a large pool of unlabeled images and only a few labeled images per category, named “few-shot object detection”. The key challenge consists in generating trustworthy training samples as many as possible from the pool. Using few training examples as seeds, our method iterates between model training and high-confidence sample selection. In training, e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2023
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v37i1.25153